
UnderPressure
by Peter Graffagnino

UnderPressure is a simple application demonstrating how to take advantage of 
the pressure sensitive features of graphics tablets under NeXTSTEP 3.0.    It is basically a 
simple paint program that draws variable-width brush strokes.    The application consists of
only two custom classes PressureView and Brush.    PressureView serves two 
illustrative purposes.    Most importantly, it shows how to set up a view to inform the event 
system that it is interested in pressure events. Secondarily, it shows how to implement a 
View with a backing store using NXImage.    The Brush class implements a simple 
moveto/lineto brush protocol, and demonstrates a reasonably efficient way to draw a 
variable width line using linecaps and trapezoidal fillets.

Areas of Interest Demonstrated in UnderPressure

· maintaing special event trackingrects for pressure andUCsnt coalescing (PressureView)
· a simple paint-brush model (Brush)
· fast filled circles using linecaps (Brush)
· using an NXImage to provide a backing store for a View (PressureView)
· using phantom outlets to set default control values at nib loading (Brush)
· handling pen proximity events as flags changed (PressureView)

Technical Details of Pressure Support in 3.0.

NeXTSTEP 3.0 supports the pressure-sensitive features of WACOM tablets.    
The pressure-pen emits a continuous range of values from its pressure-sensitive tip.    In 
order for the pen to be used as a generic pointing device (i.e. a mouse substitute),    
mouse-up and mouse-down events need to be synthesized by the low-level tablet driver.    
This is done using a pair of thresholds to implement a "debounced" binary switch -- a fairly
large pressure threshold is used to determine when to switch from mouse-up to mouse-
down, and a fairly light pressure threshold is used to determine when to switch from 
mouse-down to mouse-up.    This behavior enables the pressure pen to be used with any 
application -- emulating a mouse as closely as possible.    However, for applications that 
want to take advantage of pressure, this is clearly not the right model.    For example, if a 
paint program goes into its modal painting loop on mouseDown:, it would loose all of the 
valuable pressure data which was lighter than the mouseDown threshold!    To solve this 



problem, applications that are pressure-aware need to inform the event system that they 
are interested in all pressure events (not just mouse emulation).    In this mode the system 
will treat any non-zero pressure as a mouse-down, and zero pressure as mouse-up.    
Since this is most useful on a View basis,    this mode is set up using the array form of 
WindowServer's settrackingrect operator, which is new in 3.0 (see pressurerect.psw).    
As PressureView demonstrates, it's fairly easy to maintain the appropriate tracking rect, 
by overriding the resetCursorRects method in View.    Notice that the extra sensitivity in 
UnderPressure only takes place in the PressureView, not on the other controls in the 
window. -- a light stroke on the canvas will mark a thin line, whereas a similar stroke on 
the scrollbar will have no effect.    This is because outside the trackingUCttangle set up by 
PressureView, normal mouse emulation thresholds are used to determine mouseDown.

Another feature added to the event subsystem for 3.0 is the ability to disable 
event coalescing in the system.    Normally in NeXTSTEP events are aggressively 
coalesced making the feedback loop as tight as possible.    Sometimes, particularly with 
pen input devices, this is not what an application might want.    For example, an application
digitizing a pen-stroke for handwriting recognition, might want all of the data from the input
device.    Also, a painting program might in fact want to lag somewhat, in order to more 
faithfully render the user's gesture.    In 3.0, event-coalescing can also be controlled on a 
per-trackingrect basis.    PressureView also demonstrates this.

Event coalescing occurs at two different levels in NeXTSTEP.    All events flow 
from the input device, to the kernel, from the kernel to the WindowServer, and from the 
WindowServer to dpsclient (in your application).    Events can get coaleseced in the kernel 
or in dpsclient.    When a tracking rect is setup to disable event coalescing, the kernel will 
avoid coalescing the event, and stamp in with the NX_NONCOALSCEDFLAG in the 
event flag field.    As this event percolates up through the system, other layers of software 
will avoid coalecing the event.    (Note: dpsclient event coalecing can be controlled 
separately with the DPSSetTracking() function, however NX_NONCOALSCEDFLAG 
events are never coalesced regardless of the state of the DPSSetTracking flag.


